Occultation astrometry by 'not-so-amateur' astronomers

the DART mission

Astrometry from an occultation

- When an asteroid occults a star, the calculations are done on the 'Fundamental Plane'
- The positions of the observers on the Earth's surface for each event time are mapped to this plane
- As seen from the center of that shadow, the asteroid is perfectly aligned with the star
- The astrometry report is the RA/Dec of the star and the (x,y,z) coords of the shadow center
- The star position is from Gaia so very accurate
- Accuracy greater than all other optical methods. ADES was modified to include factors not available in other methods – such as reporting the center of mass position for an asteroid

M Projection of axis of shadow (x, y)

Astrometry reports Occultation vs Optical CCD

Optical CCD

Residuals: 20221111 K74 0.1- 0.2+

- <optical>
- <permID>65803</permID>
- ode>CCD</mode>
- stn>K74</stn>
- <obsTime>2022-11-11T01:08:31.4Z</obsTime>
- <ra>122.25075</ra>
- <dec>11.79286</dec>
- <rmsRA>0.37</rmsRA>
- <rmsDec>0.47</rmsDec>
- <astCat>Gaia3E</astCat>
- </optical>

Occultation

Residuals: 20221112 275 0.0 0.0

- <occultation>
- <permID>65803</permID>
- occ</mode>
- <sys>ICRF_KM</sys>
- ctr>399</ctr>
- <pos1>2862.372</pos1>
- <pos2>1203.397</pos2>
- <pos3>2432.596</pos3>
- <obsTime>2022-11-12T10:08:27.04Z</obsTime>
- <raStar>122.809860775</raStar>
- <decStar>12.508056732</decStar>
- <rmsRA>0.0014</rmsRA>
- <rmsDec>0.0012</rmsDec>
- <astCat>Gaia3E</astCat>
- </occultation>

- Figure 9.2. Projection of the observer and shadow on the fundamental plane
 - P Projection of observer (ξ, η)
 - M Projection of axis of shadow (x, y)

DART

Double Asteroid Redirection Test

- Designed to test the ability to deflect an asteroid by hitting it.
- Target was the satellite of an asteroid. Didymos oblate spheroid axes 851 x 620 m. Dimorphos axes 160 x 120 m.
- Primary objective: impact Dimorphos, and measure the resulting change in its motion about Didymos
- Orbit of the satellite was such that it regularly underwent eclipses and occultations with the main body as seen from the Earth
- From light curves, the orbital period could be easily measured. It was reduced by 33 minutes, from 715 minutes. About a 5% change.
- It was also anticipated the impact would change the heliocentric motion of the asteroid

IOTA's involvement

- IOTA was asked to try to observe occultations. Aim was to get precise astrometry, to assist with sending the HERA spacecraft to Didymos. HERA is a follow-up mission from the ESA, with the objective of visiting Didymos to assess what the impact did.
- Request was followed up enthusiastically by IOTA members around the world
- European Space Agency apparently did not believe Occultations could provide accurate / useful results
- Orbit updates from the occultation astrometry were undertaken at JPL. Multiple updates, with many being made within a day or two of an event
- Astrometry was derived using OCCULT functionality
- At the start of 2024, the astrometry was indicating 'interesting' changes in the position of Didymos

First occultation detection 2022 Oct 15

... followed by two on Oct 18 (EU & JP)

Step interval : 0.033s

2024/5 events

The best Didymos event 2023 Jan 21, Europe

 Dimorphos clearly detected. Chords that physically missed Dimorphos had dips because of Fresnel diffraction by a small body

Astrometry for Didymos

As of 2025 May 1

- 5955 ground-based Right Ascension/Declination measurements
- 22 stellar occultation measurements
- 3 optical navigation measurements from the DART spacecraft during approach
- 9 ground-based radar delay measurements

Orbit fit to Occultation astrometry

Most residuals < 1.5 mas

Time [UTC]	α [deg]	δ [deg]	σ_{α} [mas]	σ_{δ} [mas]	Δ_{α} [mas]	Δ_{δ} [mas]	WRSS
2022-10-15 07:03:31.42	97.1041455	-11.0346223	6.2	6.0	1.6	0.0	0.3
2022-10-18 01:17:38.09	101.5510585	-7.5427614	3.5	4.2	1.5	-1.6	0.4
2022-10-18 17:56:52.70	102.5657452	-6.7124245	1.9	2.1	2.2	-1.2	1.2
2022-10-19 08:19:57.53	103.4219904	-6.0093145	3.6	4.1	-2.0	-2.6	1.8
2022-10-19 17:02:14.52	103.9292382	-5.5934691	0.7	0.6	0.3	-0.1	0.5
2022-10-21 11:35:38.56	106.2559304	-3.6321584	4.1	4.4	1.0	0.8	0.4
2022-10-26 06:48:48.50	111.6241512	1.0639910	1.2	1.2	-1.2	-1.1	1.3
2022-10-27 09:47:04.85	112.6897403	2.0416663	1.7	1.8	1.5	0.7	1.5
2022-10-27 19:07:02.46	113.0441130	2.3712576	1.8	1.9	0.3	1.0	0.6
2022-11-12 10:08:27.04	122.8098608	12.5080567	1.4	1.2	0.2	0.2	0.3
2022-11-14 10:51:24.79	123.5309687	13.5150630	2.7	1.9	-1.3	1.2	0.6
2022-11-15 08:50:22.17	123.8426617	13.9522922	1.0	1.1	0.2	-0.1	0.2
2022-12-17 17:50:13.62	121.9657045	26.1740939	0.9	0.8	0.0	-1.1	1.5
2022-12-19 10:31:06.53	121.3261161	26.6496702	1.4	1.6	0.1	0.6	0.5
2022-12-23 11:27:00.02	119.6945635	27.6902112	1.2	1.6	1.1	1.6	1.0
2023-01-18 06:43:02.36	109.8460358	30.8253237	1.4	0.8	0.2	-0.6	0.7
2023-01-21 23:29:17.42	109.0118486	30.8469606	0.3	0.2	-0.1	0.0	0.3
2024-05-05 15:13:09.38	285.2062425	-23.1264033	0.2	0.3	0.1	-0.5	1.8
2024-09-22 02:22:35.36	269.6924187	-29.2163833	0.6	0.4	0.2	0.4	0.9
2025-03-11 12:35:52.01	77.5835568	26.5572911	0.2	0.1	-0.1	-0.0	0 <mark>.4</mark>

Orbit solutions for Didymos

Orbit solutions for Didymos

Orbit solutions for Didymos

 $\beta_{\text{d}} \ \beta_{\text{s}} \ \rho_{\text{1}} \ \rho_{\text{2}} \ \mathsf{M}_{\text{1}} \ \mathsf{M}_{\text{2}} \ \Delta v_{\text{d}} \ \Delta v_{\text{s}}$

What has been learnt?

In Summary

First-ever measurement of a human-caused change in an asteroid's heliocentric orbit, as a result of:

- Occultation astrometry which has extremely high precision. A precision greater than can be achieved by any on-Earth fixed observatory
- using portable telescopes having apertures generally between 20 and 35 cm

relying on the efforts of a world-wide collection of highly committed 'not-so-amateur' astronomers, to go out into 'the middle of no-where' and observe the necessary stellar occultations.

